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LETTER TO THE EDITOR 

On the evaluation of the class operator for the rotation group 

N B Backhouse 
Department of Applied Mathematics and Theoretical Physics, University of Liverpool, 
PO Box 147, Liverpool L69 3BX, U K  

Received 7 July 1988 

Abstract. A simple derivation is given of the explicit value of the class operator for the 
rotation group SO(3). 

In a recent paper by Hongyi and Yong [ l ]  it was shown that the class operator 

E ( + )  =& d+ [: sin 8 d e  exp[i+(Jx sin 6 cos + + J ,  sin 6 sin ++Jz  cos e)] (1) 

where Jx ,  J,, J, are infinitesimal generators of the rotation group SO(3) (or SU(2)) has 
explicit value 

sin(i+t)/ t sin(;+) (2) 
where t is related to the Casimir element J 2  = J z  + J :  + J :  by t 2  - 1 = 43’. 

We should interpret this in the sense that on expansion of (1) and (2) as power 
series in +, and in the case of ( 1 )  performing the integration over the angular variables, 
both become infinite series in the generators J,, J,, J,. In each case, the coefficient of 
+ k  is a finite polynomial of degree at most k in the generators, k = 0,1,2, .  . . , and 
therefore belongs to the enveloping algebra of the Lie algebra with commutation 
relations 

[Ja, J b l  =i&abcJc a, b, c = (x, Y ,  z ) .  (3) 
The equivalence of (1) and (2) simply means that their respective coefficient polynomials 
coincide at all degrees in + as elements of the enveloping algebra. 

We remark that the potentially troublesome factor t in the denominator of (2) 
cancels when the numerator is expanded as a series in +. Furthermore, the expansion 
of (2) only involves t 2  and therefore is a function of J 2 .  

The equality between (1) and (2) was proved directly by Hongyi and Yong using 
an elegant technique based on the Schwinger representation, coherent states and normal 
ordering. In this letter we give an alternative derivation exploiting explicit matrix 
representations of SU(2) in a very simple way. The analysis can be extended to other 
Lie groups, which is not so obviously true of the method given in [l]. 

We first observe that the operator (1) commutes with all elements of the group. 
This is because the integration is performed over the group manifold of SU(2) factored 
by its maximal torus U(1), with respect to the standard invariant measure on this coset 
space. It follows that (1) commutes with the infinitesimal generators and therefore so 
do the coefficient polynomials of each power of + in the expansion. Thus each 
coefficient polynomial lies in the centre of the enveloping algebra and must be a finite 
polynomial in J’. 
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This is encouraging since we have already observed that (2) only involves the 
generators through the combination J’. 

The next step is to evaluate (1) and (2) as matrices when the generators are replaced 
by their matrix representatives in the irreducible representation of dimension 2 j  + 1. 
Inthis spin-j representation, J 2  is the scalar matrix with diagonal entries j ( j +  1). Then 
both (1) and (2) become scalar matrices and are clearly determined completely by 
their traces. Evidently, t becomes the scalar matrix with diagonal entries 2j+ 1. Thus 

(2 j+1)  sin[(j+$)+] 
(2j+ 1) sin($+) 

Tr, sin(&+,t)/t sin(++) = 

a familiar expression as an irreducible character, where Tr, means the trace is evaluated 
in the spin-j representation. 

Now consider Tri c(+). The trace can be taken inside the integral and applied to 
the exponential. The latter is the matrix representing a group element of a rotation 
through an angle + ( O s  + s 47r). This is matrix equivalent to a matrix representing a 
rotation through the same angle in the maximal terms U( l ) ,  i.e. the spin-j representation 
this matrix 

diag(eik’, k =j ,  i - 1, . . . , - j ) .  ( 5 )  

Since trace is invariant under matrix equivalence, the trace of the exponential in (1) 
is EL=-, eik*, which is obviously independent of 0 and I$, and is known to coincide 
with (4). Performing the angular integration which simply removes the factor 47r, we 
see that (1) and (2) coincide at the spin-j representation for all j = 0, 4, 1, . . . . 

We now argue that (1) and (2) coincide as formal series in the enveloping algebra. 
The difference between (1) and (2) can be expressed in the form 

where f k  is a polynomial of degree S k  in the single operator J 2 .  Treating + as an 
indeterminate, we have shown in the paragraphs above that f k ( j ( j +  1)) = 0 for each 
integer k 3 1 and for all j ( j  + l ) , j  = 0, $, 1, . . . . But a polynomial of finite degree cannot 
vanish at an infinite number of distinct points unless it is identically zero. Thus (6) is 
identically zero and the expressions (1) and (2) coincide identically. 

We conclude with some remarks giving a wider perspective on the class operator 
and its evaluation for other groups. 

One might first encounter the equivalent of (1) in the representation theory of finite 
groups. In this context, what stands in analogy to the class operator is the sum of 
elements. More precisely, there is a function from the set of conjugacy classes of the 
group to its group algebra such that the value of the function at a given class is the 
sum of the group elements in that class. These class sums are central elements and 
indeed form a linear basis for the centre of the group algebra. Evaluated on an 
irreducible matrix representation, each class sum is represented by a scalar matrix in 
which the diagonal value is a character value. This line of argument, going back at 
least to Burnside [2], forms the basis for a method, albeit of limited practicality, for 
computing character titles from class theoretic data and involving matrix diagonalisa- 
tion. See also Chen and Birman [3] and Backhouse [4]. 
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In the case of compact Lie groups the set of conjugacy classes is in one-to-one 
correspondence with the points of the maximal torus U( 1) x U( 1) x . . . x U( l), r times, 
where r is the rank of the group. The class operator involves invariant integration 
over the coset space of the group factored by its maximal torus. We thus have a 
function C(  $, , G2, . . . , c C l r ) ,  $I E U( l) ,  1 G i G r, whose values are central formal power 
series in the enveloping algebra of the group. For a semisimple Lie group the centre 
of the enveloping algebra is generated by r independent Casimir elements, these being 
finite polynomials in the infinitesimal generators of the group. 

Suppose the irreducible representations of the group are labelled by elements 
j = ( j ,  , j 2 ,  . . . , j r )  from some index set. Let d, denote the dimension ofthejth irreducible 
representation and xJ( $, , $*, . . . , $ r )  its character, considered as a complex-valued 
function on the maximal torus. The latter is given as a quotient of trigonometric 
functions by the Weyl character formula-expression (4) is of course the simplest 
example of this. 

Now, if C is evaluated at the j th  representation, it becomes a scalar matrix whose 
diagonal value is some complex function C,( 4, , (CI2, . . . , Gr). By the method of taking 
traces, used in 5 2, we see that 

cJ = X J l d J '  i (7)  

The next step in computing C explicitly involves the Casimirs. At an irreducible 
representation the Casimirs assume scalar values which are functions of the j param- 
eters. Furthermore, it is in principle possible to invert these functions, thereby express- 
ing the j parameters in terms of the values of the Casimir elements. Equation (7) can 
now be re-expressed in terms of the latter. Finally C is obtained from C, simply by 
replacing Casimir values by the actual Casimirs themselves. 
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